NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    
 
 
griddap Subset tabledap Make A Graph wms files Title Summary FGDC ISO 19115 Info Background Info RSS Email Institution Dataset ID
https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1066_2019.subset https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1066_2019 https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1066_2019.graph Saildrone PMEL TPOS 2019 Mission, drone 1066 This file contains the real time data from the Saildrone core MetOcean sensors for the Pacific Marine Environmental Laboratory (PMEL) TPOS 2019 Mission (�Mission 3�) to the central equatorial Pacific (0, 140W). These data have not been Quality Control (QC)'d. This was the third of three missions funded by NOAA Office of Oceanic and Atmospheric Research (OAR)/CPO/GOMO and NOAA/OMAO as a pilot study for the Tropical Pacific Observing System (TPOS)-2020 project. The PIs were Dr. Meghan Cronin (NOAA PMEL), Dr. Dongxiao Zhang (UW Joint Institue for the Study of Atmoshere and Ocean (JISAO)), Dr. Adrienne Sutton (NOAA PMEL), and Mr. Christian Meinig (NOAA PMEL). Dr. Samantha Wills (UW JISAO) was a postdoctoral fellow with the project, acting as a PI and Mission Manager during this mission. Mr. Nathan Anderson contributed to the metadata creation. PMEL TPOS 2019 Mission (aka Mission 3) had four Saildrones: SD1066, SD1067, SD1068 and SD1069. All were standard Gen 5 drones (but with copper paint), with standard wings � not the large wings used in Mission 2. All had an Acoustic Doppler Current Profiler (ADCP) (not included in this file) and the core MetOcean package. The core CTDs were an RBR in the flowthrough tunnel in the keel and a pumped SBE37 at the outflow of the flowthrough tunnel. In addition, SD1066 and SD1067 had ASVCO2 carbon flux and pH system, a SPN1 shielded shortwave radiometer, and an Eppley longwave radiometer. Carbon system data (including its prawler Conductivity, Temperature, Depth (CTD) data) are served through a separate file. The vehicles were deployed out of Honolulu, HI on 9 June 2019. After performing ADCP bottom track testing on Penguin Bank, the drones proceeded to WHOTS for an intercomparison. On 17 June 2019, SD 1067 returned to shore for servicing. Following its ADCP bottom tracking tested again, on 20 June 2019 all 4 drones began their transit to the Tropical Atmosphere/Ocean (TAO) mooring at 9N, 140W, and then south towards the equator. In addition to intercomparisons against the 0N, 140W TAO buoy, several experiments were performed to survey scales of variability in the equatorial region and the structure of the cold tongue front. An experiment in the InterTropical Convergence Zone (ITCZ) was then performed before returning to Hawaii for a final intercomparison against the WHOTS mooring, a newly deployed PMEL test TELOS surface mooring and test PRAWLER mooring which carried a test Z-Cell ADCP on its bridal. The mission ended on December 20, 2019. All four Saildrones were recovered in Honolulu in early January 2020.\n\ncdm_data_type = Trajectory\nVARIABLES:\ntrajectory (Trajectory/Drone ID)\n... (102 more variables)\n https://data.pmel.noaa.gov/pmel/erddap/metadata/fgdc/xml/sd1066_2019_fgdc.xml https://data.pmel.noaa.gov/pmel/erddap/metadata/iso19115/xml/sd1066_2019_iso19115.xml https://data.pmel.noaa.gov/pmel/erddap/info/sd1066_2019/index.htmlTable https://www.pmel.noaa.gov/ (external link) https://data.pmel.noaa.gov/pmel/erddap/rss/sd1066_2019.rss https://data.pmel.noaa.gov/pmel/erddap/subscriptions/add.html?datasetID=sd1066_2019&showErrors=false&email= NOAA/PMEL sd1066_2019
https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1067_2019.subset https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1067_2019 https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1067_2019.graph Saildrone PMEL TPOS 2019 Mission, drone 1067 This file contains the real time data from the Saildrone core MetOcean sensors for the Pacific Marine Environmental Laboratory (PMEL) TPOS 2019 Mission (�Mission 3�) to the central equatorial Pacific (0, 140W). These data have not been Quality Control (QC)'d. This was the third of three missions funded by NOAA Office of Oceanic and Atmospheric Research (OAR)/CPO/GOMO and NOAA/OMAO as a pilot study for the Tropical Pacific Observing System (TPOS)-2020 project. The PIs were Dr. Meghan Cronin (NOAA PMEL), Dr. Dongxiao Zhang (UW Joint Institue for the Study of Atmoshere and Ocean (JISAO)), Dr. Adrienne Sutton (NOAA PMEL), and Mr. Christian Meinig (NOAA PMEL). Dr. Samantha Wills (UW JISAO) was a postdoctoral fellow with the project, acting as a PI and Mission Manager during this mission. Mr. Nathan Anderson contributed to the metadata creation. PMEL TPOS 2019 Mission (aka Mission 3) had four Saildrones: SD1066, SD1067, SD1068 and SD1069. All were standard Gen 5 drones (but with copper paint), with standard wings � not the large wings used in Mission 2. All had an Acoustic Doppler Current Profiler (ADCP) (not included in this file) and the core MetOcean package. The core CTDs were an RBR in the flowthrough tunnel in the keel and a pumped SBE37 at the outflow of the flowthrough tunnel. In addition, SD1066 and SD1067 had ASVCO2 carbon flux and pH system, a SPN1 shielded shortwave radiometer, and an Eppley longwave radiometer. Carbon system data (including its prawler Conductivity, Temperature, Depth (CTD) data) are served through a separate file. The vehicles were deployed out of Honolulu, HI on 9 June 2019. After performing ADCP bottom track testing on Penguin Bank, the drones proceeded to WHOTS for an intercomparison. On 17 June 2019, SD 1067 returned to shore for servicing. Following its ADCP bottom tracking tested again, on 20 June 2019 all 4 drones began their transit to the Tropical Atmosphere/Ocean (TAO) mooring at 9N, 140W, and then south towards the equator. In addition to intercomparisons against the 0N, 140W TAO buoy, several experiments were performed to survey scales of variability in the equatorial region and the structure of the cold tongue front. An experiment in the InterTropical Convergence Zone (ITCZ) was then performed before returning to Hawaii for a final intercomparison against the WHOTS mooring, a newly deployed PMEL test TELOS surface mooring and test PRAWLER mooring which carried a test Z-Cell ADCP on its bridal. The mission ended on December 20, 2019. All four Saildrones were recovered in Honolulu in early January 2020.\n\ncdm_data_type = Trajectory\nVARIABLES:\ntrajectory (Trajectory/Drone ID)\n... (102 more variables)\n https://data.pmel.noaa.gov/pmel/erddap/metadata/fgdc/xml/sd1067_2019_fgdc.xml https://data.pmel.noaa.gov/pmel/erddap/metadata/iso19115/xml/sd1067_2019_iso19115.xml https://data.pmel.noaa.gov/pmel/erddap/info/sd1067_2019/index.htmlTable https://www.pmel.noaa.gov/ (external link) https://data.pmel.noaa.gov/pmel/erddap/rss/sd1067_2019.rss https://data.pmel.noaa.gov/pmel/erddap/subscriptions/add.html?datasetID=sd1067_2019&showErrors=false&email= NOAA/PMEL sd1067_2019
https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1068_2019.subset https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1068_2019 https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1068_2019.graph Saildrone PMEL TPOS 2019 Mission, drone 1068 This file contains the real time data from the Saildrone core MetOcean sensors for the Pacific Marine Environmental Laboratory (PMEL) TPOS 2019 Mission (�Mission 3�) to the central equatorial Pacific (0, 140W). These data have not been Quality Control (QC)'d. This was the third of three missions funded by NOAA Office of Oceanic and Atmospheric Research (OAR)/CPO/GOMO and NOAA/OMAO as a pilot study for the Tropical Pacific Observing System (TPOS)-2020 project. The PIs were Dr. Meghan Cronin (NOAA PMEL), Dr. Dongxiao Zhang (UW Joint Institue for the Study of Atmoshere and Ocean (JISAO)), Dr. Adrienne Sutton (NOAA PMEL), and Mr. Christian Meinig (NOAA PMEL). Dr. Samantha Wills (UW JISAO) was a postdoctoral fellow with the project, acting as a PI and Mission Manager during this mission. Mr. Nathan Anderson contributed to the metadata creation. PMEL TPOS 2019 Mission (aka Mission 3) had four Saildrones: SD1066, SD1067, SD1068 and SD1069. All were standard Gen 5 drones (but with copper paint), with standard wings � not the large wings used in Mission 2. All had an Acoustic Doppler Current Profiler (ADCP) (not included in this file) and the core MetOcean package. The core CTDs were an RBR in the flowthrough tunnel in the keel and a pumped SBE37 at the outflow of the flowthrough tunnel. In addition, SD1066 and SD1067 had ASVCO2 carbon flux and pH system, a SPN1 shielded shortwave radiometer, and an Eppley longwave radiometer. Carbon system data (including its prawler Conductivity, Temperature, Depth (CTD) data) are served through a separate file. The vehicles were deployed out of Honolulu, HI on 9 June 2019. After performing ADCP bottom track testing on Penguin Bank, the drones proceeded to WHOTS for an intercomparison. On 17 June 2019, SD 1067 returned to shore for servicing. Following its ADCP bottom tracking tested again, on 20 June 2019 all 4 drones began their transit to the Tropical Atmosphere/Ocean (TAO) mooring at 9N, 140W, and then south towards the equator. In addition to intercomparisons against the 0N, 140W TAO buoy, several experiments were performed to survey scales of variability in the equatorial region and the structure of the cold tongue front. An experiment in the InterTropical Convergence Zone (ITCZ) was then performed before returning to Hawaii for a final intercomparison against the WHOTS mooring, a newly deployed PMEL test TELOS surface mooring and test PRAWLER mooring which carried a test Z-Cell ADCP on its bridal. The mission ended on December 20, 2019. All four Saildrones were recovered in Honolulu in early January 2020.\n\ncdm_data_type = Trajectory\nVARIABLES:\ntrajectory (Trajectory/Drone ID)\n... (94 more variables)\n https://data.pmel.noaa.gov/pmel/erddap/metadata/fgdc/xml/sd1068_2019_fgdc.xml https://data.pmel.noaa.gov/pmel/erddap/metadata/iso19115/xml/sd1068_2019_iso19115.xml https://data.pmel.noaa.gov/pmel/erddap/info/sd1068_2019/index.htmlTable https://www.pmel.noaa.gov/ (external link) https://data.pmel.noaa.gov/pmel/erddap/rss/sd1068_2019.rss https://data.pmel.noaa.gov/pmel/erddap/subscriptions/add.html?datasetID=sd1068_2019&showErrors=false&email= NOAA/PMEL sd1068_2019
https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1069_2019.subset https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1069_2019 https://data.pmel.noaa.gov/pmel/erddap/tabledap/sd1069_2019.graph Saildrone PMEL TPOS 2019 Mission, drone 1069 This file contains the real time data from the Saildrone core MetOcean sensors for the Pacific Marine Environmental Laboratory (PMEL) TPOS 2019 Mission (�Mission 3�) to the central equatorial Pacific (0, 140W). These data have not been Quality Control (QC)'d. This was the third of three missions funded by NOAA Office of Oceanic and Atmospheric Research (OAR)/CPO/GOMO and NOAA/OMAO as a pilot study for the Tropical Pacific Observing System (TPOS)-2020 project. The PIs were Dr. Meghan Cronin (NOAA PMEL), Dr. Dongxiao Zhang (UW Joint Institue for the Study of Atmoshere and Ocean (JISAO)), Dr. Adrienne Sutton (NOAA PMEL), and Mr. Christian Meinig (NOAA PMEL). Dr. Samantha Wills (UW JISAO) was a postdoctoral fellow with the project, acting as a PI and Mission Manager during this mission. Mr. Nathan Anderson contributed to the metadata creation. PMEL TPOS 2019 Mission (aka Mission 3) had four Saildrones: SD1066, SD1067, SD1068 and SD1069. All were standard Gen 5 drones (but with copper paint), with standard wings � not the large wings used in Mission 2. All had an Acoustic Doppler Current Profiler (ADCP) (not included in this file) and the core MetOcean package. The core CTDs were an RBR in the flowthrough tunnel in the keel and a pumped SBE37 at the outflow of the flowthrough tunnel. In addition, SD1066 and SD1067 had ASVCO2 carbon flux and pH system, a SPN1 shielded shortwave radiometer, and an Eppley longwave radiometer. Carbon system data (including its prawler Conductivity, Temperature, Depth (CTD) data) are served through a separate file. The vehicles were deployed out of Honolulu, HI on 9 June 2019. After performing ADCP bottom track testing on Penguin Bank, the drones proceeded to WHOTS for an intercomparison. On 17 June 2019, SD 1067 returned to shore for servicing. Following its ADCP bottom tracking tested again, on 20 June 2019 all 4 drones began their transit to the Tropical Atmosphere/Ocean (TAO) mooring at 9N, 140W, and then south towards the equator. In addition to intercomparisons against the 0N, 140W TAO buoy, several experiments were performed to survey scales of variability in the equatorial region and the structure of the cold tongue front. An experiment in the InterTropical Convergence Zone (ITCZ) was then performed before returning to Hawaii for a final intercomparison against the WHOTS mooring, a newly deployed PMEL test TELOS surface mooring and test PRAWLER mooring which carried a test Z-Cell ADCP on its bridal. The mission ended on December 20, 2019. All four Saildrones were recovered in Honolulu in early January 2020.\n\ncdm_data_type = Trajectory\nVARIABLES:\ntrajectory (Trajectory/Drone ID)\n... (94 more variables)\n https://data.pmel.noaa.gov/pmel/erddap/metadata/fgdc/xml/sd1069_2019_fgdc.xml https://data.pmel.noaa.gov/pmel/erddap/metadata/iso19115/xml/sd1069_2019_iso19115.xml https://data.pmel.noaa.gov/pmel/erddap/info/sd1069_2019/index.htmlTable https://www.pmel.noaa.gov/ (external link) https://data.pmel.noaa.gov/pmel/erddap/rss/sd1069_2019.rss https://data.pmel.noaa.gov/pmel/erddap/subscriptions/add.html?datasetID=sd1069_2019&showErrors=false&email= NOAA/PMEL sd1069_2019
https://data.pmel.noaa.gov/pmel/erddap/tabledap/saildrone_west_coast_survey_2019.subset https://data.pmel.noaa.gov/pmel/erddap/tabledap/saildrone_west_coast_survey_2019 https://data.pmel.noaa.gov/pmel/erddap/tabledap/saildrone_west_coast_survey_2019.graph Saildrone West Coast Survey 2019 West Coast Survey 2019 Mission\n\ncdm_data_type = Trajectory\nVARIABLES:\ntrajectory (Trajectory/Drone ID)\ntime (time in seconds, seconds since 1970-01-01T00:00:00Z)\nlatitude (degrees_north)\nlongitude (degrees_east)\nSOG (Speed over ground, m s-1)\nSOG_FILTERED_MEAN (Speed over ground one minute mean, m s-1)\nSOG_FILTERED_STDDEV (Speed over ground one minute stddev, m s-1)\nSOG_FILTERED_MAX (Speed over ground one minute max, m s-1)\nSOG_FILTERED_MIN (Speed over ground one minute min, m s-1)\nCOG (Course over ground, degree)\nCOG_FILTERED_MEAN (Course over ground one minute mean, degree)\nCOG_FILTERED_STDDEV (Course over ground one minute stddev, degree)\nHDG (Vehicle heading, degree)\nHDG_FILTERED_MEAN (Vehicle heading one minute mean, degree)\nHDG_FILTERED_STDDEV (Vehicle heading one minute stddev, degree)\nROLL_FILTERED_MEAN (Vehicle roll one minute mean, degree)\nROLL_FILTERED_STDDEV (Vehicle roll one minute stddev, degree)\nROLL_FILTERED_PEAK (Vehicle roll one minute peak, degree)\nPITCH_FILTERED_MEAN (Vehicle pitch one minute mean, degree)\nPITCH_FILTERED_STDDEV (Vehicle pitch one minute stddev, degree)\nPITCH_FILTERED_PEAK (Vehicle pitch one minute peak, degree)\nHDG_WING (Wing heading, degree)\nWING_HDG_FILTERED_MEAN (Wing heading one minute mean, degree)\nWING_HDG_FILTERED_STDDEV (Wing heading one minute stddev, degree)\nWING_ROLL_FILTERED_MEAN (Wing roll one minute mean, degree)\nWING_ROLL_FILTERED_STDDEV (Wing roll one minute stddev, degree)\nWING_ROLL_FILTERED_PEAK (Wing roll one minute peak, degree)\n... (52 more variables)\n https://data.pmel.noaa.gov/pmel/erddap/metadata/fgdc/xml/saildrone_west_coast_survey_2019_fgdc.xml https://data.pmel.noaa.gov/pmel/erddap/metadata/iso19115/xml/saildrone_west_coast_survey_2019_iso19115.xml https://data.pmel.noaa.gov/pmel/erddap/info/saildrone_west_coast_survey_2019/index.htmlTable http://saildrone.com/ (external link) https://data.pmel.noaa.gov/pmel/erddap/rss/saildrone_west_coast_survey_2019.rss https://data.pmel.noaa.gov/pmel/erddap/subscriptions/add.html?datasetID=saildrone_west_coast_survey_2019&showErrors=false&email= Saildrone saildrone_west_coast_survey_2019
https://data.pmel.noaa.gov/pmel/erddap/tabledap/saildrone_asvco2_mode_template.subset https://data.pmel.noaa.gov/pmel/erddap/tabledap/saildrone_asvco2_mode_template https://data.pmel.noaa.gov/pmel/erddap/tabledap/saildrone_asvco2_mode_template.graph TPOS 2017 Real-Time-CO2-Data TPOS 2017 Mission. Saildrone data from a local source.\n\ncdm_data_type = Trajectory\nVARIABLES:\nTRAJECTORY (Trajectory/Drone ID)\nINSTRUMENT_MODE (Instrument Mode / Sampling State)\nASVCO2_ERROR_FLAGS (quality flag)\nMINUTES_OFFSET (Minutes offset from gridded timestamp)\ntime (seconds since 1970-01-01T00:00:00Z)\nlatitude (latitude from Saildrone (not CO2) GPS, degrees_north)\nlongitude (longitude from Saildrone (not CO2) GPS, degrees_east)\nASVCO2_LI_TEMP_MEAN (degree_C)\nASVCO2_LI_TEMP_STDDEV\nASVCO2_LI_PRESS_MEAN (kPa)\nASVCO2_LI_PRESS_STDDEV\nASVCO2_CO2_MEAN (micromol/mol)\nASVCO2_CO2_STDDEV\nASVCO2_RH_MEAN (percent)\nASVCO2_RH_STDDEV\nASVCO2_RH_TEMP_MEAN (degree_C)\nASVCO2_RH_TEMP_STDDEV\nASVCO2_LI_RW1_MEAN (count)\nASVCO2_LI_RW1_STDDEV\nASVCO2_LI_RW2_MEAN (count)\nASVCO2_LI_RW2_STDDEV\nASVCO2_O2_MEAN (Diagnostic Oxygen, percent)\nASVCO2_O2_STDDEV\nASVCO2_XCO2_DRY_SW_MEAN (micromol/mol)\nASVCO2_XCO2_DRY_AIR_MEAN (micromol/mol)\nASVCO2_ZERO_COEFFICIENT\nASVCO2_SPAN_COEFFICIENT\n... (22 more variables)\n https://data.pmel.noaa.gov/pmel/erddap/metadata/fgdc/xml/saildrone_asvco2_mode_template_fgdc.xml https://data.pmel.noaa.gov/pmel/erddap/metadata/iso19115/xml/saildrone_asvco2_mode_template_iso19115.xml https://data.pmel.noaa.gov/pmel/erddap/info/saildrone_asvco2_mode_template/index.htmlTable http://saildrone.com (external link) https://data.pmel.noaa.gov/pmel/erddap/rss/saildrone_asvco2_mode_template.rss https://data.pmel.noaa.gov/pmel/erddap/subscriptions/add.html?datasetID=saildrone_asvco2_mode_template&showErrors=false&email= Saildrone saildrone_asvco2_mode_template

 
ERDDAP, Version 2.18
Disclaimers | Privacy Policy | Contact