![]() |
Easy Access to PMEL Scientific Data
The Pacific Marine Environmental Laboratory's ERDDAP data server for public access to scientific data |
![]() NOAA OAR PMEL |
Dataset Title: | PMEL Atmospheric Chemistry ATOMIC Aerosol Main Data, 1 min data
![]() ![]() |
Institution: | NOAA (Dataset ID: ACG_ATOMIC_RHBrown_main) |
Range: | longitude = -59.6588 to -50.9246°E, latitude = 12.7865 to 15.8652°N, altitude = 18.0 to 18.0m, time = 2020-01-07T18:00:00Z to 2020-02-11T23:59:00Z |
Information: | Summary ![]() ![]() ![]() |
Click on the map to specify a new center point.
![]() Zoom:
![]() |
Attributes { s { time { String _CoordinateAxisType "Time"; Float64 actual_range 1.57842e+9, 1.58146554e+9; String axis "T"; String comment "Start of sampling period"; String coords "time"; String ioos_category "Time"; String long_name "Datetime UTC"; String source_name "datetime_utc"; String standard_name "time"; String time_origin "01-JAN-1970 00:00:00"; String time_precision "1970-01-01T00:00:00Z"; String units "seconds since 1970-01-01T00:00:00Z"; } trajectory_id { String cf_role "trajectory_id"; String coords "time"; String ioos_category "Identifier"; String long_name "Trajectory ID"; } duration { Int32 _FillValue 2147483647; Int32 actual_range 60, 60; String coords "time"; String ioos_category "Time"; String long_name "Duration"; String units "second"; } latitude { String _CoordinateAxisType "Lat"; Float64 actual_range 12.7865, 15.8652; String axis "Y"; Float64 colorBarMaximum 90.0; Float64 colorBarMinimum -90.0; String coords "time"; String instrument "GPS"; String ioos_category "Location"; String long_name "Latitude"; String source "surface observation"; String standard_name "latitude"; String units "degrees_north"; Float64 valid_max 90.0; Float64 valid_min -90.0; } longitude { String _CoordinateAxisType "Lon"; Float64 actual_range -59.6588, -50.9246; String axis "X"; Float64 colorBarMaximum 180.0; Float64 colorBarMinimum -180.0; String coords "time"; String instrument "GPS"; String ioos_category "Location"; String long_name "Longitude"; String source "surface observation"; String standard_name "longitude"; String units "degrees_east"; Float64 valid_max 180.0; Float64 valid_min -180.0; } altitude { String _CoordinateAxisType "Height"; String _CoordinateZisPositive "up"; Float64 actual_range 18.0, 18.0; String axis "Z"; Float64 colorBarMinimum 0.0; String coords "time"; String ioos_category "Location"; String long_name "height above mean sea level"; String positive "up"; String standard_name "altitude"; String units "m"; Float64 valid_min 0.0; } ship_speed { Float64 actual_range 0.0, 13.55; Float64 colorBarMaximum 25.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "GPS"; String ioos_category "Unknown"; String long_name "Ship Speed over Ground"; String source "surface observation"; String standard_name "platform_speed_wrt_ground"; String units "knots"; Float64 valid_max 20.0; Float64 valid_min 0.0; } ship_course { Float64 actual_range 0.0, 360.0; Float64 colorBarMaximum 400.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "GPS"; String ioos_category "Unknown"; String long_name "Ship Course over Ground"; String source "surface observation"; String standard_name "platform_course"; String units "degree"; Float64 valid_max 360.0; Float64 valid_min 0.0; } ship_heading { Float64 actual_range 0.0, 360.0; Float64 colorBarMaximum 400.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "GPS Compass and Ship Gyrocompass"; String ioos_category "Unknown"; String long_name "Ship Heading"; String source "surface observation"; String standard_name "platform_orientation"; String units "degree"; Float64 valid_max 360.0; Float64 valid_min 0.0; } air_temp { Float64 actual_range 22.1, 29.05; Float64 colorBarMaximum 40.0; Float64 colorBarMinimum -10.0; String coords "time"; String instrument "Ship and PMEL sensor"; String ioos_category "Temperature"; String long_name "Air Temperature"; String source "surface observation"; String standard_name "air_temperature"; String units "degree_C"; Float64 valid_max 50.0; Float64 valid_min -20.0; } rh { Float64 actual_range 44.85, 84.24; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "Ship and PMEL Sensors"; String ioos_category "Meteorology"; String long_name "Relative Humidity"; String source "surface observation"; String standard_name "relative_humidity"; String units "percent"; Float64 valid_max 110.0; Float64 valid_min 0.0; } baro_pressure { Float64 actual_range 1011.56, 1020.39; Float64 colorBarMaximum 1050.0; Float64 colorBarMinimum 950.0; String coords "time"; String instrument "SHIP and PMEL sensors"; String ioos_category "Pressure"; String long_name "Barometric Pressure"; String source "surface observation"; String standard_name "air_pressure"; String units "hPa"; Float64 valid_max 1050.0; Float64 valid_min 950.0; } insolation { Float64 _FillValue NaN; Float64 actual_range 0.0, 1180.4; Float64 colorBarMaximum 10.0; Float64 colorBarMinimum -10.0; String coords "time"; String instrument "Epply radiometer 8-48"; String ioos_category "Heat Flux"; String long_name "Shortwave Flux"; String source "surface observation"; String standard_name "diffuse_downwelling_shortwave_flux_in_air"; String units "W m-2"; Float64 valid_max 1500.0; Float64 valid_min -10.0; } rain_rate { Float64 _FillValue NaN; Float64 actual_range 0.0, 66.22; Float64 colorBarMaximum 1.0e-4; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PEML Vaisala WX520 Precipitation Sensor"; String ioos_category "Meteorology"; String long_name "Rain Rate"; String source "surface observation"; String standard_name "rainfall_rate"; String units "MM' 'Hour-1"; Float64 valid_max 200.0; Float64 valid_min 0.0; } wind_speed { Float64 actual_range 0.45, 19.0; Float64 colorBarMaximum 15.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "Ship SSSSG IMET wind"; String ioos_category "Wind"; String long_name "Wind Speed"; String source "surface observation"; String standard_name "wind_speed"; String units "m s-1"; Float64 valid_max 50.0; Float64 valid_min 0.0; } wind_direction { Float64 actual_range 5.5, 288.9; Float64 colorBarMaximum 360.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "Ship SSSSG IMET wind"; String ioos_category "Wind"; String long_name "Wind Direction"; String source "surface observation"; String standard_name "wind_from_direction"; String units "degree"; Float64 valid_max 360.0; Float64 valid_min 0.0; } wind_u { Float64 actual_range -18.02, 3.37; Float64 colorBarMaximum 15.0; Float64 colorBarMinimum -15.0; String coords "time"; String instrument "Wind to East: Ship SSSSG IMET wind"; String ioos_category "Wind"; String long_name "east component of the wind"; String source "surface observation"; String standard_name "eastward_wind"; String units "m s-1"; Float64 valid_max 50.0; Float64 valid_min 0.0; } wind_v { Float64 actual_range -10.94, 7.08; Float64 colorBarMaximum 15.0; Float64 colorBarMinimum -15.0; String coords "time"; String instrument "Wind to North: Ship SSSG IMET wind"; String ioos_category "Wind"; String long_name "north component of the wind"; String source "surface observation"; String standard_name "northward_wind"; String units "m s-1"; Float64 valid_max 50.0; Float64 valid_min 0.0; } relative_wind_speed { Float64 actual_range 0.01, 21.14; Float64 colorBarMaximum 15.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PMEL WX520 anamometer and ship WX520 anamometer"; String ioos_category "Wind"; String long_name "Wind Speed Relative to Ship"; String source "surface observation"; String standard_name "wind_speed"; String units "m s-1"; Float64 valid_max 50.0; Float64 valid_min 0.0; } relative_wind_direction { Float64 actual_range -180.0, 179.7; Float64 colorBarMaximum 360.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PMEL WX520 anamometer and ship WX520 anamometer"; String ioos_category "Wind"; String long_name "Wind Direction Relative to Ship"; String source "surface observation"; String standard_name "wind_from_direction"; String units "degree"; Float64 valid_max 180.0; Float64 valid_min -180.0; } cn { Float64 _FillValue NaN; Float64 actual_range 0.0, 35002.9; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI 3010"; String ioos_category "Statistics"; String long_name "Particle number concentration"; String source "surface observation"; String units "cm-3"; Float64 valid_max 500000.0; Float64 valid_min 0.0; } ufcn { Float64 _FillValue NaN; Float64 actual_range 0.0, 75773.5; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI 3785 and TSI 3025A"; String ioos_category "Statistics"; String long_name "Ultrafine particle number concentration"; String source "surface observation"; String standard_name "number_concentration_of_aerosol_particles_at_stp_in_air"; String units "cm-3"; Float64 valid_max 1200000.0; Float64 valid_min 0.0; } sea_surface_temperature { Float64 _FillValue NaN; Float64 actual_range 25.9269, 28.0324; Float64 colorBarMaximum 32.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "Ship Thermosalinograph"; String ioos_category "Temperature"; String long_name "Sea Surface Temperature"; String source "surface ocean observation"; String standard_name "sea_surface_temperature"; String units "degree_C"; Float64 valid_max 45.0; Float64 valid_min -10.0; } salinity { Float64 _FillValue NaN; Float64 actual_range 34.6112, 36.7404; Float64 colorBarMaximum 37.0; Float64 colorBarMinimum 32.0; String coords "time"; String instrument "Ship Thermosalinograph"; String ioos_category "Salinity"; String long_name "Sea Surface Salinity"; String source "surface ocean observation"; String standard_name "sea_water_practical_salinity"; String units "PSU"; Float64 valid_max 45.0; Float64 valid_min 0.0; } chlorophyll { Float64 _FillValue NaN; Float64 actual_range 0.0573893, 0.453733; Float64 colorBarMaximum 30.0; Float64 colorBarMinimum 0.03; String colorBarScale "Log"; String coords "time"; String instrument "PMEL Turner fluorometer and Ship fluorometer"; String ioos_category "Ocean Color"; String long_name "Sea Surface Chlorophyll"; String source "surface ocean observation"; String standard_name "mass_concentration_of_chlorophyll_in_sea_water"; String units "mg m-3"; Float64 valid_max 10.0; Float64 valid_min 0.0; } ozone { Float64 _FillValue NaN; Float64 actual_range 12.12, 46.98; Float64 colorBarMaximum 1.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TECO 49C"; String ioos_category "Contaminants"; String long_name "Ozone Mixing Ratio"; String source "surface observation"; String standard_name "mole_fraction_of_ozone_in_air"; String units "ppb"; Float64 valid_max 200.0; Float64 valid_min 0.0; } scatter_450_sub1 { Float64 _FillValue NaN; Float64 actual_range -0.369378, 512.29; Float64 colorBarMaximum 500.0; Float64 colorBarMinimum -500.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient for Dp < 1.1 um at 450 nm, Mm-1"; String source "surface observation"; String standard_name "volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles"; String units "MM-1"; Float64 valid_max 10000.0; Float64 valid_min 0.0; } scatter_550_sub1 { Float64 _FillValue NaN; Float64 actual_range -0.156245, 332.066; Float64 colorBarMaximum 500.0; Float64 colorBarMinimum -500.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient for Dp < 1.1 um at 550 nm, Mm-1"; String source "surface observation"; String standard_name "volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles"; String units "MM-1"; Float64 valid_max 1000.0; Float64 valid_min 0.0; } scatter_700_sub1 { Float64 _FillValue NaN; Float64 actual_range -0.541471, 195.143; Float64 colorBarMaximum 500.0; Float64 colorBarMinimum -500.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient for Dp < 1.1 um at 700 nm, Mm-1"; String source "surface observation"; String standard_name "volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles"; String units "MM-1"; Float64 valid_max 10000.0; Float64 valid_min 0.0; } scatter_450_sub10 { Float64 _FillValue NaN; Float64 actual_range 4.22211, 657.885; Float64 colorBarMaximum 500.0; Float64 colorBarMinimum -500.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient for Dp < 10 um at 450 nm, Mm-1"; String source "surface observation"; String standard_name "volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles"; String units "MM-1"; Float64 valid_max 800.0; Float64 valid_min 0.0; } scatter_550_sub10 { Float64 _FillValue NaN; Float64 actual_range 4.36415, 457.364; Float64 colorBarMaximum 500.0; Float64 colorBarMinimum -500.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient for Dp < 10 um at 550 nm, Mm-1"; String source "surface observation"; String standard_name "volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles"; String units "MM-1"; Float64 valid_max 250.0; Float64 valid_min 0.0; } scatter_700_sub10 { Float64 _FillValue NaN; Float64 actual_range 3.20957, 286.071; Float64 colorBarMaximum 500.0; Float64 colorBarMinimum -500.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient for Dp < 10 um at 700 nm, Mm-1"; String source "surface observation"; String standard_name "volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles"; String units "MM-1"; Float64 valid_max 250.0; Float64 valid_min 0.0; } scatter_rh_sub10 { Float64 _FillValue NaN; Float64 actual_range 37.0283, 60.8167; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer with viasala sensor"; String ioos_category "Meteorology"; String long_name "Sample RH of aerosol light scattering coefficient for Dp < 10 um, %"; String source "surface observation"; String standard_name "relative_humidity"; String units "percent"; Float64 valid_max 100.0; Float64 valid_min 0.0; } scatter_angstrom_450_550_sub1 { Float64 _FillValue NaN; Float64 actual_range -0.83005, 2.85723; Float64 colorBarMaximum 25.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Scattering Angstrom Exponent for Dp < 1.1 um and the 450, 550 wavelength pair"; String source "surface observation"; String standard_name "angstrom_exponent_of_ambient_aerosol_in_air"; Float64 valid_max 20.0; Float64 valid_min 0.0; } scatter_angstrom_450_700_sub1 { Float64 _FillValue NaN; Float64 actual_range -0.45473, 2.56663; Float64 colorBarMaximum 25.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Scattering Angstrom Exponent for Dp < 1.1 um and the 450, 700 wavelength pair"; String source "surface observation"; String standard_name "angstrom_exponent_of_ambient_aerosol_in_air"; Float64 valid_max 20.0; Float64 valid_min 0.0; } scatter_angstrom_550_700_sub1 { Float64 _FillValue NaN; Float64 actual_range -0.997104, 2.96678; Float64 colorBarMaximum 25.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer"; String ioos_category "Optical Properties"; String long_name "Scattering Angstrom Exponent for Dp < 1.1 um and the 550, 700 wavelength pair"; String source "surface observation"; String standard_name "angstrom_exponent_of_ambient_aerosol_in_air"; Float64 valid_max 20.0; Float64 valid_min 0.0; } absorb_467_sub1 { Float64 _FillValue NaN; Float64 actual_range -2.41147, 1010.49; Float64 colorBarMaximum 1500.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Aerosol light absorption coefficient for Dp < 1.1 um at 467 nm, Mm-1"; String source "surface observation"; String standard_name "volume_absorption_coefficient_in_air_due_to_dried_aerosol_particles"; String units "MM-1"; Float64 valid_max 1000.0; Float64 valid_min 0.0; } absorb_530_sub1 { Float64 _FillValue NaN; Float64 actual_range -2.20123, 874.631; Float64 colorBarMaximum 1500.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Aerosol light absorption coefficient for Dp < 1.1 um at 530 nm, Mm-1"; String source "surface observation"; String standard_name "volume_absorption_coefficient_in_air_due_to_dried_aerosol_particles"; String units "MM-1"; Float64 valid_max 1000.0; Float64 valid_min 0.0; } absorb_660_sub1 { Float64 _FillValue NaN; Float64 actual_range -1.92273, 704.955; Float64 colorBarMaximum 1500.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Aerosol light absorption coefficient for Dp < 1.1 um at 660 nm, Mm-1"; String source "surface observation"; String standard_name "volume_absorption_coefficient_in_air_due_to_dried_aerosol_particles"; String units "MM-1"; Float64 valid_max 1000.0; Float64 valid_min 0.0; } absorb_467_sub10 { Float64 _FillValue NaN; Float64 actual_range -3.01731, 508.425; Float64 colorBarMaximum 1500.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Aerosol light absorption coefficient for Dp < 10 um at 467 nm, Mm-1"; String source "surface observation"; String standard_name "volume_absorption_coefficient_in_air_due_to_dried_aerosol_particles"; String units "MM-1"; Float64 valid_max 1000.0; Float64 valid_min 0.0; } absorb_530_sub10 { Float64 _FillValue NaN; Float64 actual_range -3.45987, 451.408; Float64 colorBarMaximum 1500.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Aerosol light absorption coefficient for Dp < 10 um at 530 nm, Mm-1"; String source "surface observation"; String standard_name "volume_absorption_coefficient_in_air_due_to_dried_aerosol_particles"; String units "MM-1"; Float64 valid_max 1000.0; Float64 valid_min 0.0; } absorb_660_sub10 { Float64 _FillValue NaN; Float64 actual_range -4.51095, 376.77; Float64 colorBarMaximum 1500.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Aerosol light absorption coefficient for Dp < 10 um at 660 nm, Mm-1"; String source "surface observation"; String standard_name "volume_absorption_coefficient_in_air_due_to_dried_aerosol_particles"; String units "MM-1"; Float64 valid_max 1000.0; Float64 valid_min 0.0; } absorb_angstrom_467_530_sub1 { Float64 _FillValue NaN; Float64 actual_range -2.30035, 20.1072; Float64 colorBarMaximum 25.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Absorption Angstrom Exponent for Dp < 1.1 um and the 467, 530 wavelength pair"; String source "surface observation"; String standard_name "angstrom_exponent_of_ambient_aerosol_in_air"; Float64 valid_max 20.0; Float64 valid_min 0.0; } absorb_angstrom_467_660_sub1 { Float64 _FillValue NaN; Float64 actual_range -2.01433, 5.11131; Float64 colorBarMaximum 25.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Absorption Angstrom Exponent for Dp < 1.1 um and the 467, 660 wavelength pair"; String source "surface observation"; String standard_name "angstrom_exponent_of_ambient_aerosol_in_air"; Float64 valid_max 20.0; Float64 valid_min 0.0; } absorb_angstrom_530_660_sub1 { Float64 _FillValue NaN; Float64 actual_range -9.70655, 5.63122; Float64 colorBarMaximum 25.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "PSAP"; String ioos_category "Optical Properties"; String long_name "Absorption Angstrom Exponent for Dp < 1.1 um and the 530, 660 wavelength pair"; String source "surface observation"; String standard_name "angstrom_exponent_of_ambient_aerosol_in_air"; Float64 valid_max 20.0; Float64 valid_min 0.0; } ssa_467_sub1 { Float64 _FillValue NaN; Float64 actual_range 0.205435, 1.0; Float64 colorBarMaximum 1.5; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer and Radiance Research PSAP"; String ioos_category "Optical Properties"; String long_name "Single Scattering Albedo for Dp < 1.1 um at 467 nm"; String source "surface observation"; String standard_name "single_scattering_albedo_in_air_due_to_ambient_aerosol_particles"; Float64 valid_max 1.0; Float64 valid_min 0.0; } ssa_530_sub1 { Float64 _FillValue NaN; Float64 actual_range 0.205913, 1.0; Float64 colorBarMaximum 6.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer and Radiance Research PSAP"; String ioos_category "Optical Properties"; String long_name "Single Scattering Albedo for Dp < 1.1 um at 530 nm"; String source "surface observation"; String standard_name "single_scattering_albedo_in_air_due_to_ambient_aerosol_particles"; Float64 valid_max 5.0; Float64 valid_min 0.0; } ssa_660_sub1 { Float64 _FillValue NaN; Float64 actual_range 0.204085, 0.999999; Float64 colorBarMaximum 6.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer and Radiance Research PSAP"; String ioos_category "Optical Properties"; String long_name "Single Scattering Albedo for Dp < 1.1 um at 660 nm"; String source "surface observation"; String standard_name "single_scattering_albedo_in_air_due_to_ambient_aerosol_particles"; Float64 valid_max 5.0; Float64 valid_min 0.0; } scatter_frh_550_sub1 { Float64 _FillValue NaN; Float64 actual_range 0.73077, 4.59838; String coords "time"; String ioos_category "Optical Properties"; String long_name "Dependence of aerosol light scattering on RH (fRH) for Dp < 1.1 um at 550 nm"; String source "surface observation"; } scatter_frh_rh_hi_sub1 { Float64 _FillValue NaN; Float64 actual_range 0.328833, 90.2497; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer with viasala sensor"; String ioos_category "Meteorology"; String long_name "Sample RH of aerosol light scattering coefficient at high RH (fRH) for Dp < 1.1 um, %"; String source "surface observation"; String standard_name "relative_humidity"; String units "percent"; Float64 valid_max 100.0; Float64 valid_min 0.0; } scatter_frh_rh_lo_sub1 { Float64 _FillValue NaN; Float64 actual_range 0.328833, 90.2497; Float64 colorBarMaximum 100.0; Float64 colorBarMinimum 0.0; String coords "time"; String instrument "TSI Model 3563 Nephelometer with viasala sensor"; String ioos_category "Meteorology"; String long_name "Sample RH of aerosol light scattering coefficient at low RH (fRH) for Dp < 1.1 um, %"; String source "surface observation"; String standard_name "relative_humidity"; String units "percent"; Float64 valid_max 100.0; Float64 valid_min 0.0; } scatter_frh_lo_550_sub1 { Float64 _FillValue NaN; Float64 actual_range -1.26914, 29.7837; String coords "time"; String instrument "TSI Model 3563 Nephelometers"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient at low RH (fRH) for Dp < 1.1 um at 550 nm"; String source "surface observation"; } scatter_frh_hi_550_sub1 { Float64 _FillValue NaN; Float64 actual_range -1.26914, 29.7837; String coords "time"; String instrument "TSI Model 3563 Nephelometers"; String ioos_category "Optical Properties"; String long_name "Aerosol light scattering coefficient at high RH (fRH) for Dp < 1.1 um at 550 nm"; String source "surface observation"; } } NC_GLOBAL { String cdm_data_type "Trajectory"; String cdm_trajectory_variables "trajectory_id"; String comment "Navigation and Meteorological Measurements Ship Position (Latitude and Longitude): In the one minute files the position is treated somewhat differently from all the other data. The position given is the ship's position at the start of the one minute 'averaging' period. All other data are a true average. The PMEL GPS was the primary source. The Ship's GPS was used when there were missing data in the PMEL record. Ship Speed, Course and Gyro: The ship's GPS speed in knots (Speed Over Ground) and GPS Course in compass degrees (Course Over Ground) are the one minute averages from the GPS (the PMEL GPS as the primary source, the Ship's GPS was the secondary source). To make the one minute averages the 1-second recorded motion vector was separated into east and north components that were averaged into one minute bins. The one minute components were then combined into the ship Velocity Vector. The GyroCompass in compass degrees is the one minute average heading. The primary source was the PMEL GPS compass (Si-TEX Vector Pro), the ship gyro compass data were used when the primary data were missing. The 1-second data were separated into an east and north component before averaging and then recombined. NOTE: The GPS-Course is the direction the ship is moving. The GyroCompass is the direction the ship's bow is pointing. When the ship is moving at 6 or more knots they generally are the same. Due to water currents, at slow speeds there can be quite a difference between the two. When the ship is stationary, the two are totally unrelated. Relative Wind: The primary source for the relative wind data was the PMEL Vaisala WX520 sonic anemometer, located on the aerosol sampling mast. For periods of missing data, the PSD Sonic anemometer on the ship’s foremast was used. The one second relative wind speed and direction data were separated into orthogonal components of \"keel\" and \"beam\". These components were averaged into 1 minute averages, and then recombined to relative wind vectors. Wind speed is reported in meters per second and wind direction is in degrees with -90 being wind approaching the ship on the port beam, 0 degrees being wind approaching the ship directly on the bow, and +90 degrees being wind approaching the ship on the starboard beam. Wind Components/ True Wind Speed/ True Wind Direction: The primary source for the true wind data was the average of the PMEL Vaisala WX520 and WX536 sonic anemometers, both located on the aerosol sampling mast, 17 m above sea level. For periods of missing data the average of the ship’s two WXT sensors, located above the ship’s navigation bridge, were used. True wind speed and direction were calculated from the relative wind taking into account the ship's motion from the GPS and the ship heading from the GPS compass. The true wind vector is given as wind speed in m/s and wind direction in compass degrees (0 degrees meaning wind arriving from the north). The WindU and WindV are the east and north components of the wind vector in m/s. WindU and WindV are positive for wind going in the east and north directions. Atmospheric Temperature: One minute averages in degrees C. The following data sources were used. The PMEL Vaisala WXT536 and the PMEL Vaisala WXT520 sensor (both on the sampling aerosol mast at 17 m above sea level) and the NOAA PSD sensor on the bow foremast also at 17 meters above the sea surface. These 3 sensors generally agreed to better than 0.5 deg C. For this project the average of the two PMEL WXT sensors was used. During periods of missing data in the PMEL record the PSD sensor was used. Relative humidity: One minute averages in %. The following data sources were used. The PMEL Vaisala WXT536 and the PMEL Vaisala WXT520 sensor (both on the sampling aerosol mast at 17 m above sea level) and the NOAA PSD sensor on the bow foremast also at 17 meters above the sea surface. These 3 sensors generally agreed within 5% in rh. For this project the average of the two PMEL WXT sensors was used. During periods of missing data in the PMEL record the PSD sensor was used. Barometric Pressure: One minute averages in units of mb. There were two sources of raw data, the PMEL WXT sensors (corrected to sea level) and the NOAA PSD sensor (corrected to sea level). For this project the average of the sea level corrected PMEL WXT sensors was used. Missing data were filled in with the PSD sea level corrected pressure. Insolation: One minute averages in units of watts per square meter. Total solar radiation was measured with an Epply black and white pyranometer (horizontal surface receiver -180, model 8-48, serial number 12946) and an Epply precision pyranometer (horizontal surface receiver -180, twin hemispheres, model PSP, serial number 133035F3) that were mounted on the top of Areophys van. Both instruments were calibrated by the Epply Laboratory on October 11, 1994. There were times when the sampling mast shaded one or both sensors. There were also times when the ship's mast/bridge shaded the sensors. The shaded data have not been edited out of the 1 minute data record. The data reported here are from the model 8-48, serial number 12946 radiometer and are in watts per square meter and are the average value over the 1 minute sampling period. Rain Rate (Precipitation): The rain rate, in mm/hr, was measured by the PMEL-Vaisala WX520 and WX536 Met sensors located near the top of the aerosol sampling mast. The average of the two sensors was used. During periods of high wind speed (above about 15 m/s), sea spray causes drops that will impact the rain sensor and register as rain, thus there are periods where rain is recorded when there is no rain falling. We have no way of editing this out of the data record so the measured rain rate at these higher wind speeds is unreliable. Aerosol inlet: Ambient aerosol particles were sampled at 18 m above sea level through a heated mast. The mast extended 5 m above and forward of the aerosol measurement container. The inlet was a rotating cone-shaped nozzle that was automatically positioned into the relative wind to maintain nominally isokinetic flow and minimize the loss of supermicrometer particles. Air entered the inlet through a 5 cm diameter hole, passed through a 7 degree expansion cone, and then into the 20 cm inner diameter sampling mast. The flow through the mast was 1 m3 min-1. The transmission efficiency of the inlet for particles with aerodynamic diameters less than 6.5 um (the largest size tested) is greater than 95% [Bates et al., 2002]. The bottom 1.5 m of the mast were heated to establish a stable reference relative humidity (RH) for the sample air controlled to the indicated target sample RH. Twenty one 1.6 cm inner diameter stainless steel tubes extending into the heated portion of the mast were connected to downstream aerosol instrumentation with either conductive silicon tubing or stainless steel tubing for analysis of organic aerosol. CN and UFCN: One of the twenty one 1.6 cm diameter tubes was used to supply ambient air to TSI 3010 (CN_Direct), a Brechtel aMCPC (CN_Stack) and TSI 3025A (UFCN_Direct) particle counters. Another one of the tubes was used to supply ambient air to TSI3785 (UFCN_Chem) and Aerosol Devices MAGIC210 (CN_MART) particle counters. The 3010, aMCPC, 3025, 3785 and MAGIC210 measure all particles larger than roughly 12, 5, 3, 5 and 5 nm respectively. The total particle counts from each instrument were recorded each second. The data were filtered to eliminate periods of calibration and instrument malfunction and zero air periods, and periods of obvious ship contamination from the R/V Brown (based on relative wind and high CN counts). The \"best\" filtered values were chosen to represent CN>12 (CN) and ultra-fine (UFCN) particle concentrations. The best CN values are primarily from CN_Direct with data from CN_Stack used to fill in periods where the CN_Direct data were not available. Similarly, the UFCN values are primarily from UFCN_Direct with the UFCN_Chem and CN_MART data used to fill in periods where UFCN_Direct data were not available. These \"best\" data were averaged into one minute periods. One second data are available upon request. Aerosol in-situ Light Scattering and Absorption, Scattering and Absorption angstrom exponents, Single Scatter Albedo, and RH dependence of scattering. A suite of instruments was used to measure aerosol light scattering and absorption. Two TSI integrating nephelometers (Model 3563) measured integrated total scattering at wavelengths of 450, 550, and 700nm (Anderson et al, 1996; Anderson and Ogren, 1998). Sample flow was taken from the AeroPhysics sampling van inlet. One nephelometer (neph_sub10) always measured aerosols of aerodynamic diameter Dae < 10 micrometers; the second nephelometer (neph_sub1) measured only aerosol of aerodynamic diameter Dae < 1.1 micrometer. When possible, both nephelometers were operated at a sensing volume RH approximately that of the indicated target sample RH. This RH was controlled by controlling the temperature of the insulated cabinet that housed the nephelometers. The 10 and 1.1 micrometer cut-offs were made with Berner multi-jet cascade impactors. Two Radiance Research Particle Soot Absorption Photometers were used to measure light absorption by aerosols at 467, 530, and 660nm (Bond et al., 1999; Virkkula et al.,2005) under 'dry' (<25% RH) conditions for sub 10 (psap_sub10) and sub 1 (psap_sub1) micrometer aerosols at the outlet of the respective nephelometers. A separate humidity controlled system measured submicrometric light scattering at two different relative humidities, approximately 25% RH and 85% RH (neph_sub1_lo and neph_sub1_hi) with two TSI integrating 3-wavelength nephelometers operated in series downstream of a Berner impactor. There are no backscattering values available from the _hi or _lo nephelometers as the backscatter shutter mode was set to \"total\" due to problematic backscatter shutters. The first nephelometer measured scattering of the ~60% conditioned aerosol from the AeroPhysics sampling van inlet at approximately 25% RH after drying of the sample flow using a PermaPure, multiple-tube nafion dryer model PR-94. Downstream of this nephelometer a humidifier was used to add water vapor to the sample flow (6 microporous teflon tubes surrounded by a heatable water-jacket). The sample was conditioned to approximately 80% RH, scattering was measured by the second TSI neph. Humidity was measured by using a chilled mirror dew point hygrometer downstream of the second neph. On the PMEL Data Sever the neph_sub1_lo data are in the SUBSCATloRH file, the neph_sub1_hi data are in the SUBSCAThiRH file. DATA COLLECTION AND PROCESSING Data from both systems were collected and processed at 1 sec resolution but are reported as 60-second averages. Data from each instrument are corrected and adjusted as described below, allowing for derivation of extensive parameters (light scattering and absorption) and intensive parameters (single scatter albedo, Angstrom exponent). Light absorption is box-car averaged by the instrument over a window 10-seconds wide. For all parameters, the bad value code is NaN. Intensive parameters are set to NaN when the extensive properties used in their calculation fell below the measurement noise threshold. Both extensive and intensive properties are set to NaN during certain events, such as during filter changes, instrument calibration, obvious instrument failure etc. Negative values of absorption might occur during periods of absorption signals near or in the range of the instrument noise, and are partly shifted into the negative range due to scattering correction. STP are p_STP=1013.2 hPa, T_STP=273.2 K. DERIVATION OF MEAN VALUES EXTENSIVE PARAMETERS Data from the TSI integrating nephelometers, Neph sub10 and Neph sub1, and f(RH=low) and f(RH=high) are processed as follows: Span gas (air and CO2) calibrations were made before the field campaign using the standard TSI program. During the campaign zero (particle free air at ambient water vapor conc.) and CO2 span checks were made at three to four day intervals. The resulting zero offset and span factors were applied to the data. The TSI nephelometers measure integrated light scattering into 7-170 degrees. To derive total scatter (0-180 degrees) and hemispheric backscatter (90-180 degrees) angular truncation correction factors were applied as recommended by Anderson and Ogren (1998). Total and hemispheric backscatter were adjusted to STP. (NOTE: There are no backscattering values available from the f(RH=low) and f(RH=high) nephelometers as discussed above.) Data from the Radiance Research Particle Soot Absorption Photometers, PSAPs sub1, sub10, and _lo, are processed as follows: Reported values of light absorption are corrected for spot size, flow rate, artifact response to scattering, and error in the manufacturer's calibration, all given by Bond et al. (1999). Except the spot size, all corrections were made after data collection, i.e. they are not integrated into the PSAP firmware. However, the PSAP's were flow-calibrated prior to the campaign, and a flow correction was applied based on routine flow checks during the cruise. Light absorption is adjusted to STP The f(RH) of scattering data is processed as follows: Reported values of light scattering at low RH and high RH were corrected to STP. the exponent describing the f(RH) dependence of scattering was determined using the scattering values of neph_lo_1min (fRH-optics) and neph_hi_1min (fRH-optics) and applying a linear regression of the relationship log(scat_hi/scat_lo) = -gamma*log((1-fracRH_hi)/(1-fracRH_lo)) based on the Kasten & Hanel formula scat_hi=scat_lo(1-fracRH)^(-gamma) [Wang et. al.,2006] The fRH values given on the data server (SUBFRH) are at the measured high and low RH values. The gamma factor calculated from the equation above is available upon request. INTENSIVE PARAMETERS The Angstrom exponent for scattering at (450,550,700nm), A_Blue = -log(Bs/Gs)/log(450/550) A_Green = -log(Bs/Rs)/log(450/700) A_Red = -log(Gs/Rs)/log(550/700) where Bs, Gs and Rs are light scattering values that apply to 450, 550 and 700 nm, respectively and where these values have been smoothed by averaging over a 30-sec wide window. The Angstrom exponent for absorption at (467,530,660nm), A_Blue = -log(Ba/Ga)/log(467/530) A_Green = -log(Bs/Rs)/log(467/660) A_Red = -log(Gs/Rs)/log(530/660) where Ba, Ga and Ra are light absorption values that apply to 467, 530 and 660 nm, respectively and where these values have been smoothed by averaging over a 30-sec wide window. The single scatter albedo of the sub-micron aerosol was calculated as follows: SSA = Neph1_scat / (Neph1_scat + PSAP1_abs) where light absorption values and scattering have been averaged over 60 seconds. SSA is given for 532nm, i.e. the nephelometer data was wavelength-shifted to match the PSAP wavelength using the nephelometer based Angstrom exponent. The sub 1 micron and sub 10 micron Scattering Angstrom exponents can be found on the PMEL Data Server in the SUBSCATANG and TOTSCATANG files. The sub 1 micron and sub 10 micron Absorption Angstrom exponents can be found in the SUBABSANG and TOTABSANG files. The sub 1 micron and sub 10 micron single scatter albedo values can be found in the SUBSSA and TOTSSA files. REFERENCES Anderson, T.L., D.S. Covert, S.F. Marshall, M. L. Laucks, R.J. Charlson, A.P. Waggoner, J.A. Ogren, R. Caldow, R. Holm, F. Quant, G. Sem, A. Wiedensohler, N.A. Ahlquist, and T.S. Bates, \"Performance characteristics of a high-sensitivity, three-wavelength, total scatter/backscatter nephelometer\", J. Atmos. Oceanic Technol., 13, 967-986, 1996. Anderson, T.L., and J.A. Ogren, \"Determining aerosol radiative properties using the TSI 3563 integrating nephelometer\", Aerosol Sci. Technol., 29, 57-69, 1998. Bond, T.C., T.L. Anderson, and D. Campbell, \"Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols\", Aerosol Sci. and Tech., 30, 582-600, 1999. A. Virkkula, N. C. Ahquist, D. S. Covert, P. J. Sheridan, W. P. Arnott, J. A Ogren,\"A three-wavelength optical extinction cell for measuring aerosol light extinction and its application to determining absorption coefficient\", Aero. Sci. and Tech., 39,52-67, 2005 A. Virkkula, N. C. Ahquist, D. S. Covert, W. P. Arnott, P. J. Sheridan, P. K. Quinn,D. J. Coffman, \"Modification, calibration and a field test of an instrument for measuring light absorption by particles\", Aero. Sci. and Tech., 39, 68-83, 2005 Wang et. al, Aerosol optical properties over the Northwestern Atlantic Ocean during NEAQS-ITCT 2004, and the influence of particulate matter on aerosol hygroscopicity, submitted to J. Geo. Phys. Res., 2006 Ozone Air was pulled from 16 m above sea level through a 1/4 inch teflon line at approximately 1 liter min-1 into a Thermo Environmental Instruments Model 49c ozone analyzer. The air inlet was approximately 2 meters below the aerosol inlet. During periods when the relative wind was behind the beam, there were obvious periods when ship exhaust was reacting with ozone, resulting in sudden spikes of low ozone. These spikes of low ozone have been edited out. The data are reported as one minute averages in units of ppb. Seawater Measurements Sea Surface Temperature and Salinity: Sea Surface Temperature (SST) in degrees C is from the ship’s Hull Probe, Salinity in PSU is from the ship's SeaBird thermosalinograph. The temperature probe and water inlet for the thermosalinograph were located 5.3 meters below the water line. The underway chlorophyll data are from the ship’s Seapoint fluorometer."; String contributor_name "Coffman, Derek/NOAA-PMEL/Address: 7600 Sand Pt. Wy. NE,Seattle,WA 98115 /email: derek.coffman@noaa.gov"; String Conventions "COARDS, CF-1.6, ACDD-1.3, NCCSV-1.0"; String creator_email "derek.coffman@noaa.gov"; String creator_name "Coffman, Derek"; String creator_url "https://www.pmel.noaa.gov/"; String dimensions "time=50760"; Float64 Easternmost_Easting -50.9246; String featureType "Trajectory"; Float64 geospatial_lat_max 15.8652; Float64 geospatial_lat_min 12.7865; String geospatial_lat_units "degrees_north"; Float64 geospatial_lon_max -50.9246; Float64 geospatial_lon_min -59.6588; String geospatial_lon_units "degrees_east"; Float64 geospatial_vertical_max 18.0; Float64 geospatial_vertical_min 18.0; String geospatial_vertical_positive "up"; String geospatial_vertical_units "m"; String history "2025-05-09T20:50:55Z (local files) 2025-05-09T20:50:55Z https://data.pmel.noaa.gov/pmel/tabledap/ACG_ATOMIC_RHBrown_main.das"; String infoUrl "https://www.pmel.noaa.gov/acg/data/index.html"; String institution "NOAA"; String keywords "above, absorb_467_sub1, absorb_467_sub10, absorb_530_sub1, absorb_530_sub10, absorb_660_sub1, absorb_660_sub10, absorb_angstrom_467_530_sub1, absorb_angstrom_467_660_sub1, absorb_angstrom_530_660_sub1, absorption, aerosol, aerosols, air, air_pressure, air_temp, air_temperature, albedo, altitude, ambient, angstrom, angstrom_exponent_of_ambient_aerosol_in_air, atmosphere, atmospheric, atomic, baro_pressure, barometric, chemistry, chlorophyll, coefficient, color, component, compounds, concentration, contaminants, course, data, datetime, density, dependence, depth, diffuse, diffuse_downwelling_shortwave_flux_in_air, direction, downwelling, dried, due, duration, earth, Earth Science > Atmosphere > Aerosols > Aerosol Optical Depth/Thickness > Angstrom Exponent, Earth Science > Atmosphere > Aerosols > Aerosol Particle Properties, Earth Science > Atmosphere > Aerosols > Particulate Matter, Earth Science > Atmosphere > Air Quality > Tropospheric Ozone, Earth Science > Atmosphere > Altitude > Station Height, Earth Science > Atmosphere > Atmospheric Chemistry > Oxygen Compounds, Earth Science > Atmosphere > Atmospheric Chemistry > Oxygen Compounds > Ozone, Earth Science > Atmosphere > Atmospheric Pressure > Atmospheric Pressure Measurements, Earth Science > Atmosphere > Atmospheric Pressure > Sea Level Pressure, Earth Science > Atmosphere > Atmospheric Pressure > Static Pressure, Earth Science > Atmosphere > Atmospheric Radiation > Shortwave Radiation, Earth Science > Atmosphere > Atmospheric Temperature > Air Temperature, Earth Science > Atmosphere > Atmospheric Temperature > Surface Air Temperature, Earth Science > Atmosphere > Atmospheric Water Vapor > Humidity, Earth Science > Atmosphere > Atmospheric Winds > Surface Winds, Earth Science > Atmosphere > Precipitation > Precipitation Rate, Earth Science > Atmosphere > Precipitation > Rain, Earth Science > Oceans > Ocean Chemistry > Chlorophyll, Earth Science > Oceans > Ocean Temperature > Sea Surface Temperature, Earth Science > Oceans > Salinity/Density > Salinity, east, eastward, eastward_wind, environmental, exponent, flux, fraction, frh, ground, heading, heat, heat flux, height, high, humidity, identifier, insolation, laboratory, latitude, level, light, longitude, low, main, marine, mass, mass_concentration_of_chlorophyll_in_sea_water, matter, mean, measurements, meteorology, min, mixing, mm-1, mole, mole_fraction_of_ozone_in_air, noaa, north, northward, northward_wind, number, number_concentration_of_aerosol_particles_at_stp_in_air, O2, ocean, ocean color, oceans, optical, optical properties, orientation, over, oxygen, ozone, pacific, pair, particle, particles, particulate, percent, platform, platform_course, platform_orientation, platform_speed_wrt_ground, pmel, practical, precipitation, pressure, properties, quality, radiation, radiative, rain, rain_rate, rainfall, rainfall_rate, rate, ratio, relative, relative_humidity, relative_wind_direction, relative_wind_speed, salinity, sample, scatter_450_sub1, scatter_450_sub10, scatter_550_sub1, scatter_550_sub10, scatter_700_sub1, scatter_700_sub10, scatter_angstrom_450_550_sub1, scatter_angstrom_450_700_sub1, scatter_angstrom_550_700_sub1, scatter_frh_550_sub1, scatter_frh_hi_550_sub1, scatter_frh_lo_550_sub1, scatter_frh_rh_hi_sub1, scatter_frh_rh_lo_sub1, scatter_rh_sub10, scattering, science, sea, sea_surface_temperature, sea_water_practical_salinity, seawater, ship, ship_course, ship_heading, ship_speed, shortwave, single, single_scattering_albedo_in_air_due_to_ambient_aerosol_particles, speed, ssa_467_sub1, ssa_530_sub1, ssa_660_sub1, static, station, statistics, stp, surface, temperature, thickness, time, trajectory, trajectory_id, tropospheric, ufcn, ultrafine, vapor, volume, volume_absorption_coefficient_in_air_due_to_dried_aerosol_particles, volume_scattering_coefficient_of_radiative_flux_in_air_due_to_ambient_aerosol_particles, water, wavelength, wind, wind_direction, wind_from_direction, wind_speed, wind_u, wind_v, winds, wrt"; String keywords_vocabulary "GCMD Science Keywords"; String license "These data were produced by NOAA and are not subject to copyright protection in the United States. NOAA waives any potential copyright and related rights in these data worldwide through the Creative Commons Zero 1.0 Universal Public Domain Dedication (CC0-1.0)."; Float64 Northernmost_Northing 15.8652; String platform "RHBrown"; String product_version "0"; String project "ATOMIC"; String sourceUrl "(local files)"; Float64 Southernmost_Northing 12.7865; String standard_name_vocabulary "CF Standard Name Table v70"; String subsetVariables "trajectory_id, duration, altitude"; String summary "Pacific Marine Environmental Laboratory (PMEL) Atmospheric Chemistry ATOMIC Aerosol Main Data - 1 min data. From early January through mid-February 2020, NOAA is partnering with several universities and other programs to lead the Atlantic Tradewind Ocean-Atmosphere Mesoscale Interaction Campaign (ATOMIC). The field study will take place in the tropical North Atlantic east of Barbados and investigate cloud and air-sea interaction processes with the goal of advancing understanding and prediction of U.S. weather and climate. ATOMIC is the U.S. complement to the European field campaign called EUREC4A. This collaborative effort involves a unique combination of ships, piloted and remotely-controlled aircraft, and remotely-controlled ocean vehicles to characterize ocean and atmospheric properties. A suite of instruments will be deployed from NOAA's research ship Ronald H. Brown and WP-3D Orion \"Hurricane Hunter\" aircraft, and on land. The focus area of ATOMIC is in the heart of the trade winds and representative of other regions across the global ocean with shallow convective clouds. Some of the Earth's largest ocean eddies (circular currents) also shed into this region from the Amazon and Orinoco Rivers. Conducting the study during winter allows researchers to observe the ocean, air, and clouds in near isolation from hurricane impacts, and to gain better insight into the ocean's involvement in making clouds that affect larger weather and climate patterns. Improved understanding of air-sea interactions in this region will help advance representations of these processes in NOAA's model forecast systems. This effort will also improve the numerical guidance used to predict weather and climate extremes."; String time_coverage_end "2020-02-11T23:59:00Z"; String time_coverage_start "2020-01-07T18:00:00Z"; String title "PMEL Atmospheric Chemistry ATOMIC Aerosol Main Data, 1 min data"; Float64 Westernmost_Easting -59.6588; } }
The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.
Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names,
followed by a collection of
constraints (e.g., variable<value),
each preceded by '&' (which is interpreted as "AND").
For details, see the tabledap Documentation.