NOAA ERDDAP
Easier access to scientific data
   
Brought to you by NOAA NMFS SWFSC ERD    

ERDDAP > tabledap > Make A Graph ?

Dataset Title:  PMEL Atmospheric Chemistry ATOMIC Impactor collected XRF Chemistry Subscribe RSS
Institution:  NOAA PMEL Atmospheric Chemistry   (Dataset ID: EUREC4A_ATOMIC_RonBrown_PMEL_XRF_Chem_v1)
Range: longitude = -59.072 to -50.9607°E, latitude = 13.1416 to 15.748°N, time = 2020-01-08T04:02:00Z to 2020-02-09T17:38:00Z
Information:  Summary ? | License ? | FGDC | ISO 19115 | Metadata | Background (external link) | Subset | Data Access Form
 
Graph Type:  ?
X Axis: 
Y Axis: 
Color: 
-1+1
 
Constraints ? Optional
Constraint #1 ?
Optional
Constraint #2 ?
       
       
       
       
       
 
Server-side Functions ?
 distinct() ?
? ("Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.Hover here to see a list of options. Click on an option to select it.")
 
Graph Settings
Marker Type:   Size: 
Color: 
Color Bar:   Continuity:   Scale: 
   Minimum:   Maximum:   N Sections: 
Draw land mask: 
Y Axis Minimum:   Maximum:   
 
(Please be patient. It may take a while to get the data.)
 
Optional:
Then set the File Type: (File Type information)
and
or view the URL:
(Documentation / Bypass this form ? )
    Click on the map to specify a new center point. ?
Zoom: 
Time range:    |<   -       
[The graph you specified. Please be patient.]

 

Things You Can Do With Your Graphs

Well, you can do anything you want with your graphs, of course. But some things you might not have considered are:

The Dataset Attribute Structure (.das) for this Dataset

Attributes {
 s {
  time {
    String _CoordinateAxisType "Time";
    Float64 actual_range 1.57845612e+9, 1.58126988e+9;
    String axis "T";
    String calendar "gregorian";
    Float64 colorBarMaximum 1.582e+9;
    Float64 colorBarMinimum 1.578e+9;
    String ioos_category "Time";
    String long_name "Midpoint Time of Sample Period";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  trajectory_id {
    String cf_role "trajectory_id";
    String ioos_category "Identifier";
    String long_name "trajectory id";
  }
  latitude {
    String _CoordinateAxisType "Lat";
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 13.1416, 15.748;
    String axis "Y";
    Float64 colorBarMaximum 90.0;
    Float64 colorBarMinimum -90.0;
    String epic_code "500";
    String instrument "GPS";
    String ioos_category "Location";
    String long_name "Midpoint Latitude of Sample Period";
    String standard_name "latitude";
    String units "degrees_north";
    Float64 valid_max 90.0;
    Float64 valid_min -90.0;
  }
  longitude {
    String _CoordinateAxisType "Lon";
    Float64 _FillValue -1.0e+34;
    Float64 actual_range -59.072, -50.9607;
    String axis "X";
    Float64 colorBarMaximum 180.0;
    Float64 colorBarMinimum -180.0;
    String epic_code "502";
    String instrument "GPS";
    String ioos_category "Location";
    String long_name "Midpoint Longitude of Sample Period";
    String standard_name "longitude";
    String units "degrees_east";
    Float64 valid_max 180.0;
    Float64 valid_min -180.0;
  }
  XRF_Al_sub1 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.0, 1.47;
    String epic_code "1968";
    String instrument "Impactor Dp<1.1um (5)";
    String ioos_category "Unknown";
    String long_name "Al Concentration in Dp < 1.1um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Al_sub10 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 7.0e-4, 3.87;
    Float64 colorBarMaximum 4.0;
    Float64 colorBarMinimum 0.0;
    String epic_code "1970";
    String instrument "Impactor Dp<10 (8)";
    String ioos_category "Unknown";
    String long_name "Al Concentration in Dp < 10um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Si_sub1 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.0, 2.91;
    String epic_code "1974";
    String instrument "Impactor Dp<1.1um (5)";
    String ioos_category "Unknown";
    String long_name "Si Concentration in Dp < 1.1um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Si_sub10 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 3.0e-4, 7.54;
    Float64 colorBarMaximum 8.0;
    Float64 colorBarMinimum 0.0;
    String epic_code "1976";
    String instrument "Impactor Dp<10 (8)";
    String ioos_category "Unknown";
    String long_name "Si Concentration in Dp < 10um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Ca_sub1 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.0, 0.2228;
    String epic_code "1977";
    String instrument "Impactor Dp<1.1um (5)";
    String ioos_category "Unknown";
    String long_name "Ca Concentration in Dp < 1.1um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Ca_sub10 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.0393, 1.23;
    Float64 colorBarMaximum 1.5;
    Float64 colorBarMinimum 0.0;
    String epic_code "1979";
    String instrument "Impactor Dp<10 (8)";
    String ioos_category "Unkown";
    String long_name "Ca Concentration in Dp < 10um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Ti_sub1 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.0, 0.097;
    String epic_code "1980";
    String instrument "Impactor Dp<1.1um (5)";
    String ioos_category "Unknown";
    String long_name "Ti Concentration in Dp < 1.1um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Ti_sub10 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.0, 0.3001;
    String epic_code "1982";
    String instrument "Impactor Dp<10 (8)";
    String ioos_category "Unknown";
    String long_name "Ti Concentration in Dp < 10um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Fe_sub1 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.0, 0.8315;
    String epic_code "1971";
    String instrument "Impactor Dp<1.1um (5)";
    String ioos_category "Unknown";
    String long_name "Fe Concentration in Dp < 1.1um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  XRF_Fe_sub10 {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 0.002, 2.77;
    Float64 colorBarMaximum 3.0;
    Float64 colorBarMinimum 0.0;
    String epic_code "1973";
    String instrument "Impactor Dp<10 (8)";
    String ioos_category "Unknown";
    String long_name "Fe Concentration in Dp < 10um  particles in air, measured by x-ray fluorescence";
    Float64 missing_value -999.0;
    String source "surface observation";
    String uncertainty "+/- 10%";
    String units "micrograms m-3";
  }
  start_time {
    Float64 actual_range 1.57843452e+9, 1.581204e+9;
    String calendar "gregorian";
    Float64 colorBarMaximum 1.582e+9;
    Float64 colorBarMinimum 1.578e+9;
    String ioos_category "Time";
    String long_name "Start Time of Sample Period";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  stop_time {
    Float64 actual_range 1.57847772e+9, 1.58133576e+9;
    String calendar "gregorian";
    Float64 colorBarMaximum 1.582e+9;
    Float64 colorBarMinimum 1.578e+9;
    String ioos_category "Time";
    String long_name "Stop Time of Sample Period";
    String standard_name "time";
    String time_origin "01-JAN-1970 00:00:00";
    String units "seconds since 1970-01-01T00:00:00Z";
  }
  sample_number {
    Float64 _FillValue -1.0e+34;
    Float64 actual_range 1.0, 27.0;
    Float64 colorBarMaximum 100.0;
    Float64 colorBarMinimum 0.0;
    String ioos_category "Statistics";
    String long_name "Sample Number";
    Float64 missing_value -999.0;
    String units "1";
  }
 }
  NC_GLOBAL {
    String _NCProperties "version=2,netcdf=4.7.4,hdf5=1.10.6";
    String cdm_data_type "Trajectory";
    String cdm_trajectory_variables "trajectory_id";
    String comment 
"Concentrations of Al, Si, Ca, Ti, and Fe were determined by thin-film x-ray primary and secondary emission spectrometry [Feely et al., 1991; Feely et al., 1998].  The analysis was conducted by Chester LabNet in Tigard, OR.  Submicron samples were collected on Teflon filters (1.0 um pore size) mounted in a Berner impactor downstream of a D50,aero 1.1 um jet plate (Berner et al., 1979).  Sub 10 micron samples were collected on Teflon filters (1.0 um pore size) mounted in a Berner impactor downstream of a D50,aero 10 um jet plate. This method of sample collection allows for the sharp size cut of the impactor while collecting a thin film of aerosol necessary for the x-ray analysis.  Sampling periods ranged from 12 to 24 hours.  The reported Ca does not include sea salt Ca (as determined from soluble Na\r
\r
concentrations and the ratio of Ca to Na in seawater).  Blank levels were determined by loading an impactor or filter pack with a filter but not drawing any air through it.\r
\r
\r
Concentrations are reported as ug/m3 at STP (25C and 1 atm).\r
\r
The mass concentrations of Al, Si, Ca, Fe, and Ti, the major elements in soil, were combined to calculate the concentration of dust. It was assumed that each element was present in the aerosol in its most common oxide form (Al2O3, SiO2, CaO, K2O, FeO, Fe2O3, TiO2). The measured elemental mass concentration was multiplied by the appropriate molar correction factor as follows:\r
\r
[Dust] = 2.2[Al] + 2.49[Si] + 1.63[Ca] + 2.42[Fe]+1.94[Ti]\r
\r
[Malm et al., 1994; Perry et al., 1997]. This equation includes a 16% correction factor to account for the presence of oxides of other elements such as K, Na, Mn, Mg, and V that are not included in the linear combination. In addition, the equation omits K from biomass burning by using Fe as a surrogate for soil K and an average K/Fe ratio of 0.6 in soil [Cahill et al., 1986].\r
\r
Berner et al., Sci. Total Environ., 13,  245 - 261, 1979.\r
\r
Cahill, T.A., R.A. Eldred, and P.J. Feeney, Particulate monitoring and data analysis for the National Park Service, 1982 – 1985, University of California, Davis, 1986.\r
\r
Feely et al., Geophys. Monogr. Ser., vol. 63, AGU, Washington, DC, 251 - 257, 1991.\r
\r
Feely et al., Deep Sea Res., 45, 2637 - 2664, 1998.\r
\r
Malm, W.C., J.F. Sisler, D. Huffman, R.A. Eldred, and T.A. Cahill, Spatial and seasonal trends in particle concentration and optical extinction in the United States, J. Geophys. Res., 99, 1347-1370, 1994.\r
\r
Perry, K.D., T.A. Cahill, R.A. Eldred, D.D. Dutcher, and T.E. Gill, Long-range transport of North African dust to the eastern United States, J. Geophys. Res., 102, 11225- 11238, 1997.";
    String contributor_name "Coffman, Derek;Johnson, James;Quinn, Patricia;Bates, Tim;Upchurch, Lucia";
    String Conventions "CF-1.6, COARDS, ACDD-1.3";
    String creator_email "james.e.johnson@noaa.gov";
    String creator_name "Johnson, James";
    String creator_url "https://saga.pmel.noaa.gov";
    String date_created "2020-11-30T17:21:22Z";
    Float64 Easternmost_Easting -50.9607;
    String featureType "Trajectory";
    Float64 geospatial_lat_max 15.748;
    Float64 geospatial_lat_min 13.1416;
    String geospatial_lat_units "degrees_north";
    Float64 geospatial_lon_max -50.9607;
    Float64 geospatial_lon_min -59.072;
    String geospatial_lon_units "degrees_east";
    String history 
"file created by NOAA/PMEL/ACG
2024-03-29T02:22:41Z (local files)
2024-03-29T02:22:41Z https://data.pmel.noaa.gov/pmel/tabledap/EUREC4A_ATOMIC_RonBrown_PMEL_XRF_Chem_v1.das";
    String infoUrl "https://saga.pmel.noaa.gov";
    String institution "NOAA PMEL Atmospheric Chemistry";
    String keywords "1.1um, 10um, air, atmospheric, atomic, chemistry, collected, concentration, data, earth, environmental, fluorescence, identifier, impactor, laboratory, latitude, longitude, marine, mass, measured, midpoint, noaa, number, ocean, oceans, optical, optical properties, pacific, particles, period, pmel, properties, ray, sample, sample_number, science, sea, seawater, silicate, start, start_time, statistics, stop, stop_time, time, trajectory, trajectory_id, water, x-ray, xrf, XRF_Al_sub1, XRF_Al_sub10, XRF_Ca_sub1, XRF_Ca_sub10, XRF_Fe_sub1, XRF_Fe_sub10, XRF_Si_sub1, XRF_Si_sub10, XRF_Ti_sub1, XRF_Ti_sub10";
    String keywords_vocabulary "GCMD Science Keywords";
    String license "The data may be used and redistributed for free but is not intended for legal use, since it may contain inaccuracies. Neither the data Contributor, ERD, NOAA, nor the United States Government, nor any of their employees or contractors, makes any warranty, express or implied, including warranties of merchantability and fitness for a particular purpose, or assumes any legal liability for the accuracy, completeness, or usefulness, of this information.";
    Float64 Northernmost_Northing 15.748;
    String platform "RHBrown";
    String product_version "1";
    String project "ATOMIC";
    String sourceUrl "(local files)";
    Float64 Southernmost_Northing 13.1416;
    String standard_name_vocabulary "CF Standard Name Table v55";
    String subsetVariables "trajectory_id";
    String summary "ATOMIC (Atlantic Tradewind Ocean Atmosphere Mesoscale Interaction Campaign) 2020 Field campaign: Surface meteorological and ship navigation collected from the RV Ronald H. Brown by the National Oceanic and Atmospheric Administration (NOAA) Pacific Marine Environmental Laboratory (PMEL) Atmospheric Chemistry Group in the tropical North Atlantic ocean from 2020-01-09 to 2020-02-13";
    String time_coverage_end "2020-02-09T17:38:00Z";
    String time_coverage_start "2020-01-08T04:02:00Z";
    String title "PMEL Atmospheric Chemistry ATOMIC Impactor collected XRF Chemistry";
    Float64 Westernmost_Easting -59.072;
    Float64 Westernnmost_Easting -59.072;
  }
}

 

Using tabledap to Request Data and Graphs from Tabular Datasets

tabledap lets you request a data subset, a graph, or a map from a tabular dataset (for example, buoy data), via a specially formed URL. tabledap uses the OPeNDAP (external link) Data Access Protocol (DAP) (external link) and its selection constraints (external link).

The URL specifies what you want: the dataset, a description of the graph or the subset of the data, and the file type for the response.

Tabledap request URLs must be in the form
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/datasetID.fileType{?query}
For example,
https://coastwatch.pfeg.noaa.gov/erddap/tabledap/pmelTaoDySst.htmlTable?longitude,latitude,time,station,wmo_platform_code,T_25&time>=2015-05-23T12:00:00Z&time<=2015-05-31T12:00:00Z
Thus, the query is often a comma-separated list of desired variable names, followed by a collection of constraints (e.g., variable<value), each preceded by '&' (which is interpreted as "AND").

For details, see the tabledap Documentation.


 
ERDDAP, Version 2.18
Disclaimers | Privacy Policy | Contact